和差化积例题两题:
1. 化简:$\cos \theta + \cos(\theta +\frac{2\pi}{3})+\cos(\theta+\frac{4\pi}{3})$
2. 证明:在 $\Delta ABC$ 中,$4\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}=\cos A +\cos B +\cos C -1$
“I never teach my pupils; I only attempt to provide the conditions in which they can learn.” ~ ALBERT EINSTEIN
Sunday, July 24, 2011
理科高数范围:三角学之和差化积公式 1
开场:和差化积公式解说。
- 已知:$\sin \alpha + \sin \beta = \frac{1}{4}$,$\cos \alpha + \cos \beta=\frac{1}{3}$。
求 $\tan(\alpha+\beta)$ 之值。
理科高数范围:三角学之积化和差公式 2
1. 计算:$2 \sin 75^\circ \cos 15^\circ$
2. 计算:$\sin 52.5^\circ \; \sin 7.5^\circ$
3. 证明:$\sin (x+y) \sin (x-y)=\sin^2 x - \sin^2 y$
4. 证明:$\sec (\frac{\pi}{4}+\theta) \sec (\frac{\pi}{4}-\theta)=2 \sec 2\theta$
2. 计算:$\sin 52.5^\circ \; \sin 7.5^\circ$
3. 证明:$\sin (x+y) \sin (x-y)=\sin^2 x - \sin^2 y$
4. 证明:$\sec (\frac{\pi}{4}+\theta) \sec (\frac{\pi}{4}-\theta)=2 \sec 2\theta$
Subscribe to:
Posts (Atom)